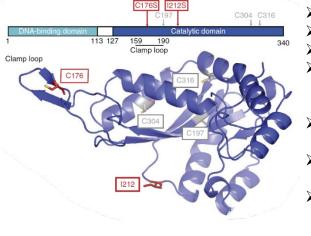


Challenge


- Gene therapy has gained major interest in research and development, especially in the field of cancer immunotherapy. Non-viral vectors such as the Sleeping Beauty (SB) transposon promise a higher biosafety and lower immunotoxicity in comparison to viral vectors.
- However, delivery of the SB gene increases risks of DNA-mediated geno- and cytotoxicity and provides limited control of transgenesis, hampering safe clinical application.

Solution

 We present a novel SB protein which overcomes these risks and provides a safer tool for the development of gene therapies, for example CAR T cells.

Technology

SBprotAct: High solubility SB (hsSB) transposase protein variant

- Enhanced solubility
- Enhanced stability
- ➤ (-80°C to 95°C)
- Suitable for large scale, low-cost, high yield recombinant production (yield: 6 mg per 1L culture; purity 99.9%)
- Safe & effective: Direct delivery of SBprotAct into a variety of mammalian cell lines and primary cells
- Dose-dependent transgene integration for tight control of inserted transgene copy number
- Hit-and-run fashion (max. 2 days time window) to minimize the risk of undesired transposition events and genotoxicity
- Efficient delivery of large transgenes (>10kb)

Domain composition of the SB protein and crystal structure of the SB100X transposase catalytic domain (PDB 5CR4) with the hsSB substitutions marked (red). Structurally buried cysteines (gray) were mutated as a control.

Internal EMBLEM Reference

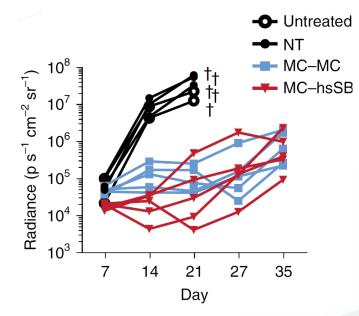
2017-052, 2019-017

Key Inventors

Dr. Orsolya Barabas, EMBL Heidelberg, Germany Dr. Irma Querques, EMBL Heidelberg, Germany Dr. Cecilia Inés Zuliani, EMBL Heidelberg, Germany

EMBLEM TECHNOLOGY TRANSFER GMBH

Boxbergring 107 69126 Heidelberg Germany


- Tel.: +49 (0) 6221 363 22 10
- ⊠ info@embl-em.de
- www.embl-em.de
- Dr. Jürgen Bauer bauer@embl-em.de

A novel Sleeping Beauty transposase system for development of gene therapies

Applications

- > Stable & efficient mammalian cell engineering
- > Functional genomics, cancer gene discovery, transgenesis
- Gene therapy with ex vivo cell manipulation
- Pharmaceutical industry (SBprotAct has high transgenesis rates in CHO cells, which constitute the main manufacturing platform for protein therapeutics & biologics such as therapeutic antibodies)
- Therapeutic cell manufacturing (e.g. CAR T) in point-of-cares (hospitals and clinics), supporting increased accessibility of gene and immunotherapies.

CD19 CAR T cell generation by SBprotAct and functional analysis of the cell product: NSG mice received intravenous injections of 5×10^5 Raji lymphoma cells expressing ffLuc (day 0). Seven days later, mice were treated with 5×10^6 CD19 CAR T cells or non-transfected control T cells and imaged at the indicated time points. A summary of luminescence signals.

Intellectual Property

WO2019038197, WO2020169673

Commercial Opportunity

The technology was demonstrated in human cell lines (HeLa), mouse embryonic stem cells (mESC), hematopoietic stem cells and primary T-cells.

We offer licensing opportunities as well as a technology evaluation program.

Further Reading

<u>Querques et al.</u> 2019, Nature Biotechnology, "A highly soluble Sleeping Beauty transposase improves control of gene insertion".

EMBLEM TECHNOLOGY TRANSFER GMBH

Boxbergring 107
 Boxbergring 107

- 69126 Heidelberg
- Germany

 \bowtie

- Tel.: +49 (0) 6221 363 22 10
- info@embl-em.de | Dr.
- www.embl-em.de

Dr. Jürgen Bauer bauer@embl-em.de

Internal EMBLEM Reference

2017-052, 2019-017

Key Inventors

Dr. Orsolya Barabas, EMBL Heidelberg, Germany Dr. Irma Querques, EMBL Heidelberg, Germany Dr. Cecilia Inés Zuliani, EMBL Heidelberg, Germany